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Abstract—In this report, we will demonstrate our experimen-
tation with a consensus algorithm for a practical problem. We
will discuss rationale for using a consensus algorithm, followed
by discussion on what benefits and drawbacks are introduced
using the consensus algorithm.
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I. INTRODUCTION AND BACKGROUND

Failure of a node is inevitable in a distributed system,
therefore a single server architecture is vulnerable to failure.
Using multiple-servers for a service can minimize the chance
of such failure, since it is unlikely that they would all fail
simultaneously. However a new issue occurs with this idea;
with multiple-servers, we need a way for them to be consistent
and coordinate efficiently.

Consensus is known as the problem of agreement [1], that
for components in a distributed system, they would agree on
the same value. With a consensus algorithm, we can solve
the issue mentioned above and create a consistent and fault-
tolerant service with multiple-servers. To demonstrate this
idea, in this report, we will showcase our implementation of
a fault-tolerant instant group-chat application, built using a
consensus algorithm.

In our report, we will first introduce the background survey
in section II, followed by comparisons of different alternatives
and rationale for deciding on Raft in section III. After that,
we will discuss the possible applications of Raft algorithm and
potential future works in IV. Lastly, we will talk about Raft
algorithm and our implementation followed by a short analysis
in section V.

II. SURVEY OF RELATED AND DIRECT WORK

Consensus algorithms are to solve the consensus problem.
In order to evaluate a consensus algorithm, we can use three
property:

1) safety: all nodes output the same value
2) integrity: if all nodes start with a value vi, they should

decide on that value vi
3) liveness: algorithm will eventually terminate
Paxos algorithm [2] is one of the earliest proposed consen-

sus algorithms. It uses a two-phase procedure for a cluster to
decide on a proposed value. It guarantees safety, and integrity,

but not liveness. However, Paxos only proposed how to make
an agreement on a single decision in [2]. To extend Paxos,
several modified versions have been proposed. Fast Paxos [3]
has been proposed by Lamport based on Brasileiro et al.’s idea
[4]. This method decreases the message number for reaching
consensus. Another version is Multicoordinated Paxos which
is more resilient and guarantees liveness without increasing
the latency of a proposal procedure [5].

The emphasis of above Paxos family algorithms is on the
theoretical foundations, which introduce too much complexity
to be implemented in practical systems [6] [7]. In contract,
there are some consensus algorithms that focus more on the
practical applications and has been widely adopted in the
industry.

Replicated state machine is one of the methods for consen-
sus. As discussed in section I, the consensus problem is about
deciding on a single value. Replicated state machine extends
this idea and instead of agreeing on a single value, the nodes
should agree on the same sequence of values.

As we discussed in lecture, the motivation for replicated
state machine is to create an illusion of a single fault-tolerant
service to users. The use of replicated state machine provides
a way to continue to provide reliable service, even when some
nodes might crash in the process.

ZooKeeper’s Atomic Broadcast (ZAB) [8] is a high-
performance broadcast algorithm that is crash-recovery. An-
other consensus algorithm is Raft [6] proposed by Diego
et al., which relies heavily on the replicated state machine
discussed above. It provides the same guarantees as Paxos or
Multicoordinated Paxos, including correct result and latency
upper bound. Diego et al. states that Raft is as good as Paxos
and much more understandable. This feature is attracting an
increasing number of consensus applications based on Raft. As
an example, Kafka decided to replace Zookeeper with Raft in
2020 [9]. This adaptation enables them to manage metadata
in a more scalable and robust way, enabling support for more
partitions and simplifying the deployment and configuration
of Kafka.

III. CRITICAL ANALYSIS OF THE ALGORITHMS REVIEWED

Paxos largely impacted on consensus algorithms since pro-
posed, and influenced lots of consensus algorithms afterward



[6]. Paxos proposes three roles, proposer, acceptor, and learner,
and uses a two-phase proposal procedure to ensure safety and
correctness of the algorithm. A value will be proposed by
proposers and be voted by acceptors, then be learnt by learners
after quorums of votings. The first phase is the prepare-
promise phase, which ensures integrity and safety property of
consensus problems since it guarantees that if there exists a
proposed value accepted by quorums of acceptors, no second
proposed value will be proposed. The second phase is accept-
accepted phase, where a proposer broadcasts its proposal to
acceptors and waits for acceptance from quorums of acceptors.
A proposed value will be decided after phase 2, unless
being interrupted by another proposer. Indeed, interruption in
proposal procedure can happen for infinite times, as a FLP
scenario [10], which fails for Paxos to ensure liveness in a
crash-recovery asynchronous model.

Though Paxos were strongly influential in research and
application development of consensus algorithms in the 00s,
as Ongaro et al. [6] states, Paxos algorithm is too difficult
to understand. Paxos is also criticized for its difficulty in
implementation in the real world, since it leaves out many
specific cases that might have occurred in practical systems.
For example, Chubby built for Google File System is devel-
oped based on Paxos. Chandra et al. [7] blames that there
exists a huge gap between Paxos theory and the needs for real-
world application. Junqueira et al. [8] point out that Paxos can
not run parallel transactions unless batching them all together,
which will introduce more latency and decrease throughput.
From the above claims, Paxos is not suitable for our project.
For one thing, Paxos is notoriously opaque for understanding
and implementation in a short period. It can be foreseen
that we will spend much effort on studying the Paxos paper
and struggle when implementing some unmentioned scenarios.
Therefore we should instead focus on the consensus algorithms
that are widely used in practice.

A. practical consensus algorithms

ZooKeeper’s Atomic Broadcast (ZAB) [8] protocol is a
high-performance broadcast algorithm that serves for Yahoo!
and Apache in highly-available coordination services. ZAB
might be one of the most widely used consensus algorithms
in the world. Its correctness and performance are verified by
millions of users and applications based on it. As Junqueira
et al.’s [8] prove, ZAB ensures safety, integrity, and a total
ordering of the primaries (similar to proposal in Paxos).
ZAB also satisfies liveness by introducing a random delay.
Compared to Paxos, ZAB’s strong leadership pattern simplifies
lots of logic in consensus, which is more understandable, and
its detailed specification covers almost all the situations to
encounter in practical systems.

However, given a short project window, engineering ZAB
from scratch may pose too much of a challenge. In contrast
to the ZAB, Raft is known for its simplicity and ease of
implementation. Raft is a consensus algorithm proposed by
[6]. A key advantage of Raft is despite being much simpler
for understanding and implementing, it also provides at least

the same guarantee compared to Paxos. Raft will be further
discussed in section V-A.

Comparing ZAB and Raft, Raft has only two types of
communication, which only needs four types of message to be
implemented, while ZAB has 10 message types. Though ZAB
will be more efficient by using different messages in specific
situations, it introduces lots of work load for coding and testing
for each message type and their state machine. Using a strong
leader pattern for both ZAB and Raft, Raft only cares about
the data flow from leader to followers, while ZAB will take
care of data flow in bi-direction in order to be more sensitive
in detection of faults. For our application, Raft’s guarantee
in failure detection is sufficient, therefore it is unnecessary
to implement a complex algorithm like ZAB. When a leader
fails and a new leader comes to power, ZAB will apply a
full version of synchronization of log replicas while Raft will
only apply an incremental part of synchronization between
new leader and followers. Raft can recover faster than ZAB if
most of the followers’ log replicas are up-to-date. For above
claims, we finally choose Raft as the consensus algorithm for
our chat application.

IV. FUTURE DIRECTIONS AND APPLICATIONS

Raft algorithm can be applied to a range of problems.
Specifically, Raft is designed to solve the issues of practical
distributed systems with minimal complexity. Raft utilize the
method of replicated state machine [6] to provide fault toler-
ance, that is especially important to a large scale application.
Possible application for a large scale application of Raft is to
manage leader election, as the coordinator for an application
[6]. Additionally, Raft can be used to manage the configuration
for a distributed system so that different components can
maintain consistent configurations.

A. Case study

RabbitMQ is a very popular open-source application, that
works as message broker to exchange messages between
different services. One of the message broker services provided
by RabbitMQ is the Quorum Queues [11], that is designed
to be highly durable and fault-tolerant, built using the Raft
algorithm. Raft algorithm allows the Quorum Queues to be
highly resilient to data loss [11], which may be significant to
some critical sections of application e.g. the bank transaction.
However, the caveat for using the Quorum Queues is that
Raft algorithm may introduce unnecessary latency to the
application due to the log exchange nature of the application,
and the large log that the algorithm can produce over time
[11]. This is not desirable in some application like real-time
gaming, where low latency is very important, and the data are
mostly transient.

B. Future directions

Since there are a wide-range of applications of Raft algo-
rithm, our future directions includes attempting to apply it
to other types of applications and looking to explore further
with the Raft algorithm. In terms of applications, we would



Fig. 1: From [6], visualization of state
machine

like to explore the sharing of configuration in a distributed
system using Raft algorithm. In terms of exploring further
with Raft algorithm, there are many extensions to the basic
Raft algorithm, like membership changes and log compaction
mentioned in [6], which we would like to apply in our
application to extend the functionality as well.

In specific, membership changes allow the services to con-
tinue providing services during the changes of configuration,
like adding or removing some running instances [6]. In our
application, we implemented a closed group membership,
where we defined a group of servers in the configuration and
the application cannot adapt to a new configuration until they
are stopped. The idea of membership changes that allows the
configuration to change without stopping the server is a huge
improvement if we were to deploy our application.

Log compaction is a technique to solve the issue machine
crashing caused by a excessively large log file [6]. Since for
our application, the amount of logs is very limited compared
to an actual deployed application that millions of users can use
everyday, log compaction was not very necessary. Nonetheless
we are interested to explore the compaction algorithm further
to prepare for a large scale application.

V. DISCUSSION OF CHOSEN ALGORITHM,
IMPLEMENTATION DETAILS AND FORMAL DESCRIPTION

The core idea of Raft algorithm is to utilize replicated state
machine (see fig 1), which provide an easy framework to
implement a fault-tolerant distributed system [12].

The construction of replicated state machine relies heavily
on the deterministic property of algorithms, which states that
given the same sequence of inputs, the outputs are always the
same [6]. Therefore, given consistent log replication which
can be viewed as inputs, different nodes in the system should
produce consistent state machines.

The replicated states can be anything that suits the appli-
cation. For a large-scale application, the replicated states can
for example be a configuration, such that all components in
the system can share the same configuration. An example will
be the KRaft (Apache Kafka Raft) mentioned in section II;
Kafka uses Raft algorithm to share configuration across the
entire system [13].

A. Raft algorithm discussion

The role of Raft algorithm is to provide a simple frame-
work for replicating consistent logs on different nodes in the
system, so that the identical state machines can be constructed
deterministically as we discussed previously. Raft uses a strong
leader approach, such that the log entries flow unidirectionally
from the strong leader to other nodes, called the followers,
which aims to simplify the process of log replication [6].
Additionally, Raft decomposes the consensus problem into
three sub-problems being:

1) Leader election: a new leader should be elected when
the current leader fails.

2) Log replication: the elected leader will forward the
received logs to all the nodes in the system.

3) Safety: ensures consistent states across all nodes. If any
node applies a log at a particular index, all nodes should
apply the same log at that index.

The simplicity of Raft algorithm lies in the fact that it
requires minimally 2 remote procedure endpoints to implement
the basic functions. On top of that, the total amount of states
required by Raft algorithm is also as simplified as possible
[6]. Based on that, we would say that Raft provides a simple
framework for a very complex problem. Additionally, based
our experimentation with Raft algorithm, we agree that Raft
succeed in accomplishing the ultimate goal mentioned in
[6], that they provide ”understandability” for a large-scale
audience.

The 2 remote procedure endpoints are
1) AppendEntries RPC: invoked by the leader to replicate

logs to its followers, which also serves as heartbeat
for failure detection. If any follower has’t received
an AppendEntries request from the leader for a given
amount of time, they consider the leader crashed and
start the election process (see (1) in fig 2).

2) RequestVote RPC: invoked by the candidate during the
election process to receive votes from other nodes in the
system.

There are 3 different types of roles in Raft
1) Leader: coordinator of the system, responsible for repli-

cating logs.
2) Follower: receives log from leader and detects leader

failure.
3) Candidate: candidate for potential leader; the candidate

with the highest term value should be elected as leader
(discussed below).

The transition of these roles can be visualized in fig 2.
Transition (1) happens when the follower detects the failure of
the leader, by implementing a random internal election timer
for each node. The random element of the election timer is
designed to ”break ties”; this prevents all nodes from timing
out simultaneously. In expectation, at least some nodes will
have a shorter timeout interval than other nodes, and win the
vote from the other nodes, preventing the election process from
running indefinitely. In the event of such an unfortunate ”tie”
situation, transition (3) will occur that is also implemented
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Fig. 2: adapted from [6], state transition diagram
for Raft algorithm, indicating the possible role
transition

Fig. 3: screenshot of our group chat application

with a random timeout, for the same reason. Therefore, in
expectation even if ”tie” occurs, eventually it will be resolved
by the implementation of random timeout.

As we discussed in lecture, a reliable failure detector is
impossible in asynchronous networks. Transition (2) ensures
that, when a false failure detection occurs, upon receiving the
next message from the current leader, the election process will
cease while retaining the current leader. Transition (4) happens
when the candidate receives majority votes from all the nodes
during the election process. Transition (5) is designed for the
leader to ”resign”, upon seeing a server with a higher term,
and as will be discussed later, a node with a higher term should
be elected as the new leader.

Time is divided into terms in Raft algorithm, which increase
monotonically over the duration of the application [6]. Gener-
ally, a node with a highest term value is concurrent with the
most committed logs. Thus, a node with a lower term value
should not be elected as the leader since some information
might be missing for the node.

B. Implementation details

To showcase the diverse application of Raft algorithm, we
implemented a group instant chat application (see fig 3). The

group chat application is built on a server-client architecture.
It allows users with different user id to chat in the same
channel, and the other users can see the messages sent quickly.
Additionally, we want the message delivery to be reliable,
i.e. every message received and acknowledged by the server
should be received by the other users eventually. We built the
server using Spring boot1, for the functionality that it provides
and the client application using Angular2, for the powerful
renderer that it provides.

The order of messages in our application are both FIFO
(first in first out i.e. if a user send message A before message
B, every user should see message A before message B) and
Totally ordered (if a user see messages in a particular order
A → B → C, then all users should see the messages in the
same order A → B → C). The total order is ensured by the
Raft algorithm, due to the nature of replicated state machine of
Raft and the deterministic property discussed in section V-A.
For the FIFO order, each message is associated with a user
index on the client side, that determines the actual order being
sent.

To connect the chat-application client (fig 3) to the service,
we declare these endpoints from the server:

1) poll: for client to poll (i.e. fetch) messages from the
server periodically to check if there is any new messages.

2) send: deliver a message to server with an unique id that
should be received by other users in the same channel
eventually.

3) lastMessages: get the last-k (e.g. 30) messages from
the servers. Designed for when clients first enter the
application they only get the last-k messages instead
of the entire list of messages. An infinite scrolling is
employed that when users scroll up, the application can
continue to fetch older messages using this endpoint
also.

4) senderIndex: get the latest userIndex for a user, which
is used for FIFO message ordering.

As discussed in section V-A, the replicated state machine is
dependent on the application. In our application, our replicated
state machine consist of:

1) messageList: a list of messages to store the sequence of
messages sent by user.

2) userSequence: a key value map of user id being the key
and user index being the value, which is used to ensure
FIFO order of messages discussed above.

3) holdingQueues: a data structure for FIFO order, which
is used to postpone out-of-order messages.

4) receivedMessages: a set that is used to check and avoid
duplicated message.

Each log entry contains
1) uid: to uniquely identify a log entry
2) action: command for the state machine

1Spring boot is a versatile backend framework in Java, more details at
https://spring.io/projects/spring-boot

2Angular is a powerful frontend framework in Javascript, more details at
https://angular.io/



3) data: contains the message
4) term: that is used by the Raft algorithm to ensure a larger

term node can become the leader.
using the replicated log, all nodes in the system can deter-

ministically construct identical state machines, and therefore
provide consistent services for users. Specifically, during each
commitment, when the majority of nodes have received a
particular log entry, the leader will commit and apply the log
followed by its followers. The log contains a create command
for a message, that will be appended to messageList mentioned
above, in additional to mutating other states.

We also make the service:
1) Highly available: for a system of n nodes, the service

can tolerate up to ⌊n−1
2 ⌋ failures; e.g. a system of 5

nodes can tolerate up to 2 node failures.
2) Highly reliable: despite catastrophic failures to the ma-

jority of nodes, providing that one node in the system
have the full log history, all committed data are intact. As
discussed in section V-A, since the node has the highest
term value, it will be elected as the leader and replicate
its intact log to all other nodes, resulting in a very high
reliability.

3) Horizontally scalable: since most of our requests are
read request, i.e. the poll requests, having more servers
can handle more poll requests, indicating horizontal
scalability.

These properties are enabled by implementing the Raft
algorithm to distribute the data storage and services across
different servers in the network. Accordingly, our service is
highly resilient to single point of failure, risk of data loss,
resulting in a very robust and fault-tolerant service, creating
an illusion of a single service credit to the consistent replicated
states machine provided by Raft algorithm.

C. Differences

Despite that our implementation mostly follows the Raft
algorithm, there are some slight differences that differentiate
our approach with the Raft algorithm that we think will suit
our application better than simply adopting Raft algorithm.

In Raft algorithm, servers communicate through RPC (Re-
mote procedure call). The Java equivalent of RPC is RMI
(Remote method invocation), which requires a RMI repository
to function properly. In order to create a fault tolerant system,
the RMI repository needs to also be fault tolerant, which
adds complexity to our system model. For our application, we
decided that such complication was not necessary and resorted
to use http call to Spring boot endpoint instead.

We also decided to forward the message through servers,
which is different from the Raft algorithm. In Raft algorithm,
when a client first interact with a non-leader service, the
service will reject the client’s request and assist the client to
connect to the leader [6]. We resorted to allowed the clients
to connect to different servers to provide horizontal scaling.
As discussed above, our requests are read-dominant, having
more servers serving the clients’ requests can increase the

throughput of the system. For this reason, we implemented
an approach to let the followers forward the messages from
client to the leader, to provide horizontal scalability for the
services while maintaining Raft’s properties.

D. Critical analysis

Despite Raft provides an easy framework for our applica-
tion to provide consistent and fault-tolerant service, it also
introduces some limitations.

As discussed in section IV-A, one fundamental issue with
Raft algorithm is the high latency induced by the log replica-
tion process. For an instant chat application, having a lower
latency for messages may benefit the users more than having
a robust and fault-tolerant one.

Additionally, for a large-scale chat application like What-
sApp, the amount of messages being sent everyday can be
tremendously high. Accordingly for our application, the log
induced by the high volume of messages can result in a
substantially large log file, scaled by the number of nodes
in the system since the entire log history is replicated to other
nodes.

VI. CONCLUSION

In this paper, we describe the need for a consensus algorithm
for our chat application, and research on several existing
consensus algorithms proposed for distributed systems. We
analyze and contrast each algorithm and finally choose Raft
algorithm to handle the log replication task for our chat
application for its simplicity and practical viability. Also,
we investigate the practical applications developed based on
Raft and the future development direction for our application.
Finally, we have a detailed discussion on Raft and its im-
plementation details in our application, and critically analyze
some shortcomings of using Raft.

From this project, we learn two key things. One is that the
theoretical algorithm might be too abstract to be implemented
in the real world application, even though it provides a strong
theoretical guarantee on its property. Another thing is that
though Raft is relatively simple for study and development, it
might not be suitable for all situations, e.g. a latency-sensitive
system.
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